MASON INDUSTRIES, Inc. MERCER RUBBER Co. 350 Rabro Drive, Hauppauge, NY 11788 Mason- 631/348-0282 • Info@Mason-Ind.com Mercer- 631/582-1524 • Info@Mercer-Rubber.com | JOB NAME | ECGWN-SS-NSF | |---------------|------------------------------------| | CUSTOMER | E041111-00-1101 | | CUSTOMER P.O. | 2" (50mm) Movement
SS EXPANSION | | MASON M. | COMPENSATOR with | | DWG No | GROOVED WELD NIPPLES | | FAX 031/348-02/9 | DWG NO. | NIPPLES | |--|--|---| | ALL COMPONENTS STAINLESS STEEL | Bellows are externally pressurized. 3.5 Minimum | ASSIFIE | | GROOVED NIPPLES MAY BE WELDED IN PIPELINES AS AN ALTERNATE. OVERALL OUTE HOUSIN | Safety Factor for both Bellows and Housing. | C UL US | | AT CG sizes 3 & 4 only MOVING GUIDE FLANGE | SCHEDULE 40 NIPPLES grooved for couplings and beveled | WATER QUALITY DRINKING WATER SYSTEM COMPONENT NNEX G of ANSI / NSF 6 (4RV6) | | 2" (50mm) COMPRESSION 1/2" (13mm) EXTENSION MOVEMENT | NPT DRAIN PORT (Coupling and Plug) | n removed to
drain hose
uinage. | | SCALE | 2 PLY BELLOWS Clearance on both sides to eliminate wear | | | LOCKING BOLTS Release after installation MOVING EC Size Bolt No & Size | BELLOWS CLEARANCE CLEARANCE Conforms to UL and A Approved Temperatur | | | END 1/2" - 2" 2 - 3/8" 21/2" - 3" 2 - 1/2" | Full Vacuum Rating- | 30" (<i>762mm</i>) Hg | | ECGV | VN-SS- | NSF DIN | IENSIC | ONS AND | PRESSU | RE RATI | NGS | (America | n & M | etric U | nits) | 2" (5 | 0mm |) CON | IPRES | SSION, | 1/2" (1 | I3mm) E | XTEN' | SION | | |---------------------------------------|-----------------------|----------------------------------|--------------------------------|--|--------------------------|---------------------------------------|----------------------|------------------------------|--------------------------|------------------------------|------------------|---|----------------------|--------------------------------------|----------------------|--|-----------------------------|---------|----------------------|--------------------|---------------------| | Pipe Overall Mov
Size Length Neutr | | Movin
Neutral | IE
ig End
Length
(mm) | FE
Fixed End
Length
(in) (mm) | | Outer
Housing
O.D.
(in) (mm) | | | | | | Spring Rate $\left(\frac{\text{lbs}}{\text{in}} \frac{kg}{cm}\right)$ | | Thrust @ 200 13.8 psi bar (lbs) (kg) | | Rated
Pressure
@70°F @21°C
(psi) (kg/cm²) | | | | | | | 3/4
1
11/4
11/2 | 20
25
32
40 | 121/2
121/2
13
13 | 318
318
330
330 | 33/4
33/4
4
4 | 95
95
102
102 | 15/8
15/8
17/8
17/8 | 41
41
48
48 | 27/8
31/2
4
41/2 | 73
89
102
114 | 0.10
0.13
0.15
0.17 | 3
3
4
4 | 0.43
0.55
0.47
0.46 | 11
14
12
12 | 89
95
103
106 | 16
17
18
19 | 350
500
800
1100 | 159
227
363
499 | 200 | 14
14
14
14 | 7
9
10
13 | 3
4
5
6 | | 2
21/2
3
4 | 50
65
80
100 | 131/2
141/4
143/4
143/4 | 343
362
375
375 | 41/8
43/8
41/2
41/2 | 105
111
114
114 | 21/4
21/4
21/2
21/2 | 57
57
64
64 | 51/4
61/4
65/8
85/8 | 133
159
168
219 | 0.17
0.24
0.32
0.33 | 4
6
8
8 | 0.52
0.53
0.37
0.81 | 13
14
9
21 | 110
126
140
150 | 20
23
25
27 | 1600
2400
3500
5200 | 726
1089
1588
2359 | 200 | | 33 | 8
11
15
23 | Lower Thrust Forces in proportion at lower pressures, i.e. 100 psi Force = 100/200 x published Thrust. Forces on Pipe Anchors must include Thrust Force and Spring Force. Spring Force is determined by multiplying the joint Spring Rate by its Thermal Movement. (in/mm) EC's installed in piping systems must be anchored on both sides of the joint. EC's installed in unanchored piping must have control rods. When using ECGWN-SS-NSF products in copper or brass water systems, dielectric couplings must be used on each end to prevent leakage from galvanic action. GUIDE SPACING - Referencing Pipe Diameter "D" Guides and Anchor for ECGWN-SS-NSF located near Anchor Guides and Anchors for ECGWN-SS-NSF located between Anchors 14D ECGWN-SS-NSF ECGWN-SS-NSF Downstream Guided at Anchored at Downstream Upstream Guided at Guided at Moving Moving Fixed Anchor Moving End Fixed Fixed End Anchor Anchor both ends both ends End Fnd End *Plus an additional 3" (76mm) for Sizes 3/4" to 21/2" | QTY | SIZE | TAG | | QTY | SIZE | TAG | |-----|------|--------|------|-----|------------|-----| IDWN I | CHKD | DΔ | TF DWG No. | | Certification Form S-5040 07/2013 DWN CHKD DATE DWG No.